PII: S0040-4039(96)01085-4 ## First Total Synthesis and Structural Elucidation of (-)-Goniofupyrone Chisato Mukai,* Syuichi Hirai, In Jong Kim, and Miyoji Hanaoka* Faculty of Pharmaceutical Sciences, Kanazawa University Takara-machi, Kanazawa 920, Japan Abstract: The first total synthesis of (-)-goniofupyrone, isolated from Goniothalamus giganteus, was accomplished in a stereoselective manner from (+)-tricarbonyl(η^6 -2-trimethylsilylbenzaldehyde)-chromium(0) complex. This synthesis unambiguously established the relative and absolute stereochemistry of (-)-goniofupyrone. Copyright © 1996 Elsevier Science Ltd In 1991 (-)-goniofupyrone was isolated with several other antitumor styryllactones from the stem bark of Goniothalamus giganteus.¹ The gross structure of goniofupyrone was determined as (4R*,4aR*,6S*,7S*, 7aR*)-4,7-dihydroxy-6-phenyl-1,5-dioxabicyclo[4.3.0]nonan-2-one (1) based on its spectral evidence, especially by analysis of NMR spectra as well as by comparison with those of the related compounds, (+)-altholactone (3)² and its stereocongeners.³ However, no information on its absolute configuration has so far been available. We describe herein the first total synthesis of 1, the originally proposed structure for goniofupyrone, and its C-4 epimer 2 in optically active form, thereby unambiguously establishing the relative as well as absolute configuration of (-)-goniofupyrone. 1: R = -- OH (proposed structure) 2 : R = OH 3: altholactone Recently we have completed stereoselective total syntheses of goniofufurone, 4a,b goniobutenolide A and B, 4b antitumor styryllactones possessing the γ -lactone skeleton as a common structural feature, from (+)-tricarbonyl(η^{6} -2-trimethylsilylbenzaldehyde)chromium(0) complex 5 via the γ -butenolide intermediate 4. Therefore our first concern and most significant requirement for our stereocontrolled synthesis of 1 and 2 in this paper was efficient transformation of the γ -lactone moiety of 4 into the δ -lactone framework. The hydroxy group of (-)-4, 4 prepared from the chiral benzaldehyde-chromium(0) complex by six steps, was protected with TMS group to give 5 (97%), which was subsequently exposed to the following conditions, 6 (i) reduction with DIBALH, (ii) treatment with potassium *tert*-butoxide at -60°C, (iii) oxidation with PDC, selectively giving rise to the ring transformed product 6 accompanied with migration of TMS group. Acid treatment of the crude products consising of 6 and a small amount of 5 provided the desired δ-lactone (-)-7,7 in 67% overall yield from 5 along with (-)-4 (7%). Construction of the dioxabicyclo[4.3.0]nonenone skeleton was achieved by tosylation of the allylic hydroxy group of 7 (92%), followed by exposure to tetrabutylammonium fluoride and hydrofluoric acid to afford (+)-8 in 89% yield. Debenzylation of 8 with SnCl₄ gave (+)-altholactone (3)^{7,8} in 98% yield. Reaction Conditions: (a) TMS-imidazole, CH_2Cl_2 , rl, 97%; (b) DIBALH, Et_2O , -78°C; (c) tBuOK , THF, -60°C; (d) PDC, AcONa, CH_2Cl_2 , rl; (e) 10% HCl, MeOH, rl, 67% from 5; (f) TsCl, DMAP, rl, 92%; (g) TBAF-HF, THF, rl, 89%; (h) SnCl₄, CH_2Cl_2 , 40°C, 98%; (i) OsO₄, NMO, Me₂CO-H₂O, rl, 75%; (j) Sml₂, ethylene glycol, THF, rl, 62%; (k) SnCl₄, CH_2Cl_2 , 40°C, 76%; (l) Ac₂O, DMAP, CH_2Cl_2 , 90%; (m) DIBALH, Et_2O ,-78°C; (n) TsOH, MeOH, rl, 77% (ca. 1 : 1 mixture) from 10; (o) TPAP, NMO, CH_3CN , rl; (p) LiAlH₄, THF, -20°C; (q) rl-CPBA, BF₃*OEt₂, rl-CH₂Cl₂, rl, 60% from 12; (r) SnCl₄, rl-CH₂Cl₂, 40°C, 74%; (s) Ac₂O, DMAP, rl-CH₂Cl₂, rl, 85%. With the dioxabicyclo[4.3.0]nonen-2-one derivative (+)-8 in hand, next phase of our program is faced to introduction of a hydroxy functionality at C-4 position from a concave face. Since direct and stereoselective hydroxylation at C-4 position of 8 from the si-face seemed to be difficult, we alternatively took the stepwise procedure. cis-Dihydroxylation of 8 from the re-face proceeded in a highly stereoselective manner when exposed to osmium tetraoxide⁹ yielding (+)-9¹⁰ in 75% yield. The hydroxy group at C-3 position of 9 was then removed by samarium diiodide¹¹ to furnish (+)-10 (62%), which was subsequently converted into (-)-2 ($[\alpha]_D^{18}$ -6.9° (c 0.15, CHCl₃)),¹² the C-4 epimer of 1. Unexpectedly and surprisingly ¹H-NMR and ¹³C-NMR data of (-)-2^{13,14} and its diacetate 11¹³ were in good agreement with those ^{15,16} of natural (-)-goniofupyrone and its diacetate, respectively. In order to confirm the structure of (-)-goniofupyrone, the synthesis of 1, the proposed structure for goniofupyrone, 1 was completed. The Mitsunobu reaction 17 of 10 under several conditions was unfortunately fruitless, presumably due in large part to the β -hydroxy carbonyl structure leading to easy dehydration. The lactone moiety of 10 was therefore reduced with DIBALH to give 12 as a ca. 1: 1 mixture of two stereoisomers in 77% yield. The acetal 12 was successively oxidized with tetrapropylammonium perruthenate 18 and reduced with LiAlH₄. Regeneration of the lactone moiety of the resulting C-4 epimers of 12 was achieved by treatment with m-CPBA in the presence of BF₃•OEt₂¹⁹ producing 13 in 60% overall yield from 12 along with 10 (14%). Finally debenzylation of 13 with SnCl₄ gave (-)-1($[\alpha]_D^{18}$ -59.2° (c 0.10, CHCl₃)). 12 H-NMR and 13 C-NMR data of synthetic (-)-1, 20 , 21 however, were not in accordance with those 15 , 16 of natural goniofupyrone. Furthermore, the diacetate 14 showed the different 1 H-NMR spectrum 20 from that 15 of the diacetate of natural goniofupyrone. Thus we have accomplished the first total synthesis of (-)-goniofupyrone (2) from (+)-tricarbonyl(η^6 -2-trimethylsilylbenzaldehyde)chromium(0) complex in a highly stereocontrolled manner. This synthesis concluded that natural (-)-goniofupyrone possesses (4R,4aS,6R,7R,7aS)-4,7-dihydroxy-6-phenyl-1,5-dioxabicyclo[4.3.0]nonan-2-one structure and should be depicted as 2. ## REFERENCES AND NOTES - (1) Fang, X.-P.; Anderson, J. E.; Chang, C.-J.; McLaughlin, J. L. Tetrahedron 1991, 47, 9751-9758. - (a) El-Zayat, A. A. E.; Ferrigni, N. R.; McCloud, T. G.; McKenzie, A. T.; Byrn, S. R.; Cassady, J. M.; Chang, C.-J.; McLaughlin, J. L. Tetrahedron Lett. 1985, 26, 955-956. (b) Gesson, J. P.; Jacquesy, J. C.; Mondon, M. Tetrahedron 1989, 45, 2627-2640. - (3) Ueno, Y.; Tadano, K.; Ogawa, S.; McLaughlin, J. L.; Alkofahi, A. Bull. Chem. Soc. Jpn. 1989, 62, 2328-2337. - (4) (a) Mukai, C.; Kim, I. J.; Hanaoka, M. Tetrahedron Lett. 1993, 34, 6081-6082. (b) Mukai, C.; Hirai, S.; Kim, I. J.; Kido, M.; Hanaoka, M. Tetrahedron 1996, 52, 6547-6560. - (5) Mukai, C.; Cho, W.-J.; Kim, I. J.; Kido, M.; Hanaoka, M. Tetrahedron 1991, 47, 3007-3036. - (6) Yamazaki, T.; Mizutani, K.; Kitazume, T. J. Org. Chem. 1993, 58, 4346-4359. - (7) The structure of (-)-7 was elucidated by its spectral evidence. Furthermore, conversion of (-)-7 into the related styryllactones, (+)-goniotriol and (+)-8-acetylgoniotriol via inversion of the allylic hydroxy group - unambiguously confirmed its structure. These results combined with the detail of syntheses of (-)-goniofupyrone (2) and (+)-altholactone (3) will appear as a full paper in due course. - (8) Synthetic (+)-altholactone shows mp 108-109°C(lit.^{2a} mp 110°C) and $[\alpha]_D^{25}$ +182.0° (c 0.05, EtOH)(lit.^{2a} $[\alpha]_D^{25}$ +184.7° (EtOH)). - (9) For example; (a) Naruse, M.; Aoyagi, S.; Kibayashi, C. J. Org. Chem. 1994, 59, 1358-1364. (b) Keck, G. E.; Romer, D. R. J. Org. Chem. 1993, 58, 6083-6089. (c) Hanessian, S.; Murray, P. J. J. Org. Chem. 1987, 52, 1170-1172. - (10) The relative stereochemistry of two hydroxy groups at C-3 and C-4 positions was determined by X-ray crystallographic analysis of the diacetate derivative of racemic 9. This result will also be reported with the detail of this manuscript. - (11) Reed, A. D.; Hegedus, L. S. J. Org. Chem. 1995, 60, 3787-3794. - (12) The reported specific rotation for (-)-goniofupyrone is $[\alpha]_D^{25}$ -5.0° (c 0.10, CHCl₃).¹ - (13) Diagnostically selected ¹H-NMR data: 2; 4.44 (dt, J = 5.9, 3.9 Hz, C₄-H), 4.36 (ddd, J = 5.4, 3.9, 1.0 Hz, C_{4a}-H), 2.91(dd, J = 16.6, 3.9 Hz, C₃-H), 2.68 (ddd, J = 16.6, 5.9, 1.0 Hz, C₃-H). 11; 5.49 (q, J = 3.9 Hz, C₄-H), 4.36 (br-t, J = 3.9 Hz, C_{4a}-H), 3.03 (dd, J = 17.6, 3.9 Hz, C₃-H), 2.75 (ddd, J = 17.6, 3.9, 1.0 Hz, C₃-H). - (14) ¹³C-NMR data of 2; 169.29, 137.93, 128.72, 128.46, 126.00, 86.76, 85.72, 83.65, 76.37, 65.82, 35.08. - (15) Diagnostically selected 1 H-NMR data 1 : Goniofupyrone; 4.43 (ddd, J = 5.6, 3.9, 3.6 Hz, C₄-H), 4.32 (br-t, J = 5.2, 3.9 Hz, C_{4a}-H), 2.89 (dd, J = 16.9, 3.6 Hz, C₃-H), 2.67 (dd, J = 16.9, 5.6 Hz, C₃-H). Diacetate of goniofupyrone; 5.47 (q, J = 4.2, 3.8, 3.5 Hz, C₄-H), 4.34 (br-t, J = 3.5 Hz, C_{4a}-H), 3.10 (dd, J = 17.5, 4.2 Hz, C₃-H), 2.73 (dd, J = 17.5, 3.8 Hz, C₃-H). - (16) ¹³C-NMR data¹ of goniofupyrone; 169.18, 137.90, 128.77, 128.52, 126.04, 86.67, 85.68, 83.68, 76.43, 65.85, 35.07. - (17) (a) Mitsunobu, O. Synthesis 1981, 1-28. (b) Barks, J. M.; Knight, D. E.; Weingarten, G. G. J. Chem. Soc., Chem. Commun. 1994, 719-720. - (18) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639-666. - (19) Grieco, P. A.; Oguri, T.; Yokoyama, Y. Tetrahedron Lett. 1978, 419-420. - (20) Diagnostically selected ¹H-NMR data: 1; 4.49 (dd, J = 6.4, 3.9 Hz, C_{4a}-H), 4.37 (m, C₄-H), 2.91(dd, J = 16.6, 7.8 Hz, C₃-H), 2.63 (dd, J = 16.6, 3.4 Hz, C₃-H). 14; 5.40 (ddd, J = 11.2, 5.9, 2.9 Hz, C₄-H), 4.63 (t, J = 2.9 Hz, C_{4a}-H), 3.03 (dd, J = 17.1, 11.2 Hz, C₃-H), 2.91 (dd, J = 17.1, 5.9 Hz, C₃-H). - (21) ¹³C-NMR data of 1; 168.88, 137.43, 128.79, 128.72, 126.25, 85.93, 84.57, 83.31, 74.11, 63.67, 34.83. (Received in Japan 10 May 1996; revised 30 May 1996; accepted 3 June 1996)